Abstract
Data driven methods are widely used for the development of Landslide Susceptibility Mapping (LSM). The results of these methods are sensitive to different factors, such as the quality of input data, choice of algorithm, sampling strategies, and data splitting ratios. In this study, five different Machine Learning (ML) algorithms are used for LSM for the Wayanad district in Kerala, India, using two different sampling strategies and nine different train to test ratios in cross validation. The results show that Random Forest (RF), K Nearest Neighbors (KNN), and Support Vector Machine (SVM) algorithms provide better results than Naïve Bayes (NB) and Logistic Regression (LR) for the study area. NB and LR algorithms are less sensitive to the sampling strategy and data splitting, while the performance of the other three algorithms is considerably influenced by the sampling strategy. From the results, both the choice of algorithm and sampling strategy are critical in obtaining the best suited landslide susceptibility map for a region. The accuracies of KNN, RF, and SVM algorithms have increased by 10.51%, 10.02%, and 4.98% with the use of polygon landslide inventory data, while for NB and LR algorithms, the performance was slightly reduced with the use of polygon data. Thus, the sampling strategy and data splitting ratio are less consequential with NB and algorithms, while more data points provide better results for KNN, RF, and SVM algorithms.
Funder
University of Technology Sydney
King Saud University
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献