High interpretable machine learning classifier for early glaucoma diagnosis

Author:

Escamez Carlos Salvador Fernandez, ,Martinez Susana Perucho,Fernandez Nicolas Toledano, ,

Abstract

AIM: To develop a classifier for differentiating between healthy and early stage glaucoma eyes based on peripapillary retinal nerve fiber layer (RNFL) thicknesses measured with optical coherence tomography (OCT), using machine learning algorithms with a high interpretability. METHODS: Ninety patients with early glaucoma and 85 healthy eyes were included. Early glaucoma eyes showed a visual field (VF) defect with mean deviation >-6.00 dB and characteristic glaucomatous morphology. RNFL thickness in every quadrant, clock-hour and average thickness were used to feed machine learning algorithms. Cluster analysis was conducted to detect and exclude outliers. Tree gradient boosting algorithms were used to calculate the importance of parameters on the classifier and to check the relation between their values and its impact on the classifier. Parameters with the lowest importance were excluded and a weighted decision tree analysis was applied to obtain an interpretable classifier. Area under the ROC curve (AUC), accuracy and generalization ability of the model were estimated using cross validation techniques. RESULTS: Average and 7 clock-hour RNFL thicknesses were the parameters with the highest importance. Correlation between parameter values and impact on classification displayed a stepped pattern for average thickness. Decision tree model revealed that average thickness lower than 82 µm was a high predictor for early glaucoma. Model scores had AUC of 0.953 (95%CI: 0.903- 0998), with an accuracy of 89%. CONCLUSION: Gradient boosting methods provide accurate and highly interpretable classifiers to discriminate between early glaucoma and healthy eyes. Average and 7-hour RNFL thicknesses have the best discriminant power.

Publisher

Press of International Journal of Ophthalmology (IJO Press)

Subject

Ophthalmology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3