Interpretable surrogate models to approximate the predictions of convolutional neural networks in glaucoma diagnosis

Author:

Sigut Jose,Fumero FranciscoORCID,Arnay Rafael,Estévez JoséORCID,Díaz-Alemán Tinguaro

Abstract

Abstract Deep learning systems, especially in critical fields like medicine, suffer from a significant drawback, their black box nature, which lacks mechanisms for explaining or interpreting their decisions. In this regard, our research aims to evaluate the use of surrogate models for interpreting convolutional neural network (CNN) decisions in glaucoma diagnosis. Our approach is novel in that we approximate the original model with an interpretable one and also change the input features, replacing pixels with tabular geometric features of the optic disc, cup, and neuroretinal rim. We trained CNNs with two types of images: original images of the optic nerve head and simplified images showing only the disc and cup contours on a uniform background. Decision trees were used as surrogate models due to their simplicity and visualization properties, while saliency maps were calculated for some images for comparison. The experiments carried out with 1271 images of healthy subjects and 721 images of glaucomatous eyes demonstrate that decision trees can closely approximate the predictions of neural networks trained on simplified contour images, with R-squared values near 0.9 for VGG19, Resnet50, InceptionV3 and Xception architectures. Saliency maps proved difficult to interpret and showed inconsistent results across architectures, in contrast to the decision trees. Additionally, some decision trees trained as surrogate models outperformed a decision tree trained on the actual outcomes without surrogation. Decision trees may be a more interpretable alternative to saliency methods. Moreover, the fact that we matched the performance of a decision tree without surrogation to that obtained by decision trees using knowledge distillation from neural networks is a great advantage since decision trees are inherently interpretable. Therefore, based on our findings, we think this approach would be the most recommendable choice for specialists as a diagnostic tool.

Funder

Universidad de La Laguna

Spanish Ministry of Science, Innovation and Universities

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3