Tissue-Specific Metabolism of Benzene in Zymbal Gland and Other Solid Tumor Target Tissues in Rats

Author:

Low Lawrence K.1,Lambert Charles E.1,Meeks J. Ralph2,Naro Paul A.1,Mackerer Carl R.1

Affiliation:

1. Stonybrook Laboratories Inc., Princeton, New Jersey, U.S.A.

2. Environmental Health and Safety Department, Mobil Oil Corporation, Princeton, New Jersey, U.S.A.

Abstract

In vitro studies were carried out to investigate whether target organ susceptibility to benzene-induced solid tumor formation is governed by tissue-specific differences in metabolism. The ability of several target and nontarget tissues to deconjugate and conjugate polar metabolites, to metabolize benzene to phenolic metabolites, to carry out peroxidative biotransformations, and to trap tissue glutathione was evaluated. The Zymbal gland, the organ most sensitive to benzene-induced tumorigenicity, showed extensive phenyl- and aryl-sulfatase activity but no phenol sulfoconjugating activity. Similarly, oral cavity tissue, mammary gland, and bone marrow showed sulfatase activity but lacked sulfotransferase activity. Sulfatase-mediated hydrolysis such as that observed in the Zymbal gland may represent an important pathway by which polar metabolites are shunted from urinary or biliary excretion as their sulfates to delivery to target tissues as phenolic or potentially reactive metabolite(s). Zymbal gland, nasal and oral cavity, and mammary gland tissue homogenates (10,000 g supernatant) all possess oxidative capability to metabolize benzene to phenol, hydroquinone, and catechol. Nasal cavity homogenates produced two-to eightfold higher levels of phenol, hydroquinone, and catechol from benzene than did liver homogenates. Zymbal gland, bone marrow, and oral cavity homogenates, when incubated with hydroquinone and glutathione, produced high levels of 2-(S-glutathionyl)hydroquinone, indirectly indicating the production of 1,4-benzoquinone, a reactive intermediate implicated in benzene toxicity. Peroxidases have been proposed to mediate the oxidation of p-hydroquinone to 1,4-benzoquinone. The Zymbal gland, nasal and oral cavities, mammary gland, and bone marrow all were found to possess greater peroxidase activity than contrasting nontarget tissues did. The metabolic capabilities of target tissues, including the ability to hydrolyze sulfate conjugates to free phenolic compounds, to oxidize benzene to phenolic metabolites, to bioactivate hydroquinone to a reactive intermediate, and to carry out peroxidative reactions may offer possible explanations for the greater susceptibility of these sites to benzene-induced tumorigenicity. Transport of sulfate conjugates and their release via hydrolysis (e.g., through sulfatase action) (“sulfate shunting”) and subsequent oxidation (e.g., through peroxidase action) may represent a novel mechanistic pathway by which potentially reactive benzene metabolites can gain access to target sites and initiate critical genotoxic events.

Publisher

SAGE Publications

Subject

Toxicology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3