Early Identification of COVID-19 Progression to Its Severe Form Using Artificial Intelligence

Author:

Yuan Lei,Chen Jia,Feng Hui,Lv Junwei,Lu Xuefang,Ji Mengyao

Abstract

Background: Early prediction of disease progression in coronavirus disease 2019 (COVID-19) patients can be helpful for personalized therapy, as well as the optimal allocation of public health resources. Objectives: This study aimed to present predictive models for identifying potential high-risk COVID-19 patients upon hospital admission, based on the examination of clinical and radiological features by radiologists and artificial intelligence (AI). Patients and Methods: A total of 786 initially non-severe COVID-19 patients were retrospectively enrolled in this study between January 2 and May 28, 2020. The patients were randomly divided into training (n = 628, 80%) and test (n = 158, 20%) groups. Clinical factors, laboratory indicators, and radiologist- and AI-extracted radiological features of pneumonia lesions were determined using a convolution neural network. The features were selected based on the Boruta algorithm with five-fold cross-validation. Four models, including a model based on clinical findings (model C), a model based on the physician’s examination of radiological features (R-Doc model), a model based on AI-derived radiological features (R-AI model), and an AI-based model mimicking the physician’s examinations (AI-Mimic-Doc model), were constructed for predicting COVID-19 progression upon admission, using a logistic regression analysis. The predictive performance of the four models was evaluated by calculating the area under the receiver operating characteristic (AUC) curve with a 95% confidence interval (95% CI) and then compared using the DeLong test. Results: Overall, 238 out of 786 patients (30.3%) progressed into severe or critical pneumonia during the 14-day follow-up. Nine clinical findings, 17 laboratory indicators, 48 physician-extracted radiological features of pneumonia lesions, and 126 AI-driven radiological features were collected. The urea, albumin level, and lesion size in the basal segment of the right lower lobe of the lung or the proportion of CT values in the range of -200 - 60 in the left lung were the representative features for constructing the R-Doc and R-AI models, respectively. Comparison of the R-Doc model (AUC: 0.840, 95% CI: 0.747 - 0.933 for the training set and 0.731, 95% CI: 0.606 - 0.857 for the test set) with the R-AI model (AUC: 0.803, 95% CI: 0.701 - 0.906 for the training set and AUC: 0.731, 95% CI: 0.606 - 0.857 for the validation set) indicated a marginal difference in identifying patients at risk of progression to pneumonia upon admission (P < 0.1). The R-AI model was superior to model C, with an AUC of 0.770 for the training set (95% CI: 0.657 - 0.882) and 0.666 for the validation set to identify high-risk non-severe cases upon admission. Conclusion: By using radiological features along with blood tests, early identification of COVID-19 patients, who are at risk of disease progression, can be achieved on admission (rapidly by using AI); therefore, the use of these features can contribute to the clinical management of COVID-19.

Publisher

Briefland

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3