Affiliation:
1. Belgorod State Technological University named after V.G. Shukhov
Abstract
The goal of this paper was the study flame lengths dependence on biogas composition to decide if the boiler`s furnaces using natural gas need reconstruction for biogas usage or it is possible to use the already existing equipment. The analytical one-dimensional model of a diffusion straight-flow flame in unrestricted and restricted space and the numerical three-dimensional model of a turbulent flame in a swirled airflow have been applied in this research. The research has analyzed the flame length for methane content of 20 to 100% in biogas. It has been concluded that by changing the methane content in biogas the heating plant1s operating mode can be stable on the condition that the biogas flow rate is controlled to ensure constant heat production during its combustion and turbulent flame with a swirled airflow. Combustion, in this case, can be done by using the same burner and without changing the size of the furnace.
Publisher
BSTU named after V.G. Shukhov
Reference7 articles.
1. Bajpai P. Biomass to Energy Conversion Technologies. Amsterdam: Elsevier, 2020. 246 p., Bajpai, P. (2020). Biomass to Energy Conversion Technologies. Amsterdam: Elsevier.
2. Hosseini S.E., Bagheri G., Wahid M.A. Numerical investigation of biogas flameless combustion. Energy Convers. Manag. Pergamon. 2014. Vol. 81. P. 41 50., Hosseini, S.E., Bagheri, G., & Wahid, M.A. (2014). Numerical investigation of biogas flameless combustion. Energy Convers. Manag. Pergamon, 81, 41 50. Available: https://doi.org/10.1016/j.enconman.2014.02.006
3. Mordaunt C.J., Pierce W.C. Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion. Fuel. 2014. Vol. 124. P. 258 68., Mordaunt, C.J., & Pierce, W.C. (2014). Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion. Fuel, 124, 258 68. Available: https://doi.org/10.1016/j.fuel.2014.01.097
4. Альмохаммед О.А., Кузнецов В.А. Численное исследование закономерностей горения природного газа в вертикальной топке. Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2013. № 2. С. 163-167., Al'mohammed, O.A., & Kuznecov, V.A. (2013). CHislennoe issledovanie zakonomernostej goreniya prirodnogo gaza v vertikal'noj topke [Numerical study of the laws of natural gas combustion in a vertical furnace]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova, 2, 163-167 [In Russian].
5. Суслов Д.Ю., Рамазанов Р.С. Моделирование сжигания биогаза в инжекционной горелке с тепловым рассекателем. Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2020. № 4. С. 40-47., Suslov, D.YU., & Ramazanov, R.S. (2020). Modelirovanie szhiganiya biogaza v inzhekcionnoj gorelke s teplovym rassekatelem [Simulation of biogas combustion in an injection burner with a thermal splitter]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova, 4, 40-47 [In Russian].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献