Affiliation:
1. Belgorod State Technological University named after V.G. Shukhov
Abstract
The article discusses and analyzes various options for the design of robotic mobility platforms (RMP), which can be used as part of complete test benches and simulators for training operators of various equipment. Various trajectories of movement of the mobile platform of the RMP are considered. Investigations have been carried out based on a parameterized simulation model (MSC Adams) to determine the optimal location of the attachment points of the joints in the upper movable platform. Minimization of the force parameters in the reactions of the corresponding supports was chosen as an optimization criterion in this case. All the accepted trajectories were worked out during the investigation. Various options of the relative position of the joints of the base and the upper movable platform of the RMP have been investigated. Similarly, for the selected trajectories, an investigation and analysis of the force parameters arising in the joints at different main diameters of the location of the base and upper movable platform joints were carried out. As an initial main version, an option was adopted with the arrangement of the joint supports taken as the optimal one. Modeling and search for the most optimal execution options are carried out based on the developed digital simulation model of the RMP in the MSC Adams system. The results of mathematical and simulation modeling are presented.
Publisher
BSTU named after V.G. Shukhov
Subject
Psychiatry and Mental health,Neuropsychology and Physiological Psychology
Reference20 articles.
1. Kong H., Gosselin C.M. Type Synthesis of Parallel Mechanisms. Berlin: Springer. 2007. 276 p. doi:10.1007/978-3-540-71990-8, Kong H., Gosselin C.M. Type Synthesis of Parallel Mechanisms. H. Kong, C.M. Gosselin. Berlin: Springer. 2007. 276 p. doi:10.1007/978-3-540-71990-8
2. Merlet J.-P. Parallel Robots. Berlin: Springer. 2007. 402 p., Merlet J.-P. Parallel Robots, 2nd ed. J.-P. Merlet. Berlin: Springer. 2007. 402 p.
3. Rybak L., Khalapyan S., Gaponenko E. Issues of planning trajectory of parallel robots taking into account zones of singularity // IOP Conference Series-Materials Science and Engineering. 2018. No. 327. 042092. doi:10.1088/1757-899X/327/4/042092, Rybak L., Khalapyan S., Gaponenko E. Issues of planning trajectory of parallel robots taking into account zones of singularity. IOP Conference Series-Materials Science and Engineering. 2018. No. 327: 042092. doi:10.1088/1757-899X/327/4/042092
4. Чурин В.В. Использование компьютерных тренажеров для подготовки рабочих дорожно-строительных профессий // Молодой ученый. 2011. Т.3. № 4. С. 28–29., Churin V.V. The use of computer simulators for training workers in road-building professions [Ispol'zovaniye komp'yuternykh trenazherov dlya podgotovki rabochikh dorozhno-stroitel'nykh professiy]. Young Scientist. 2011. Vol. 3. Iss. 4. Pp. 28–29. (rus)
5. Rybak L., Malyshev D., Gaponenko E. Optimization algorithm for approximating the solutions set of nonlinear inequalities systems in the problem of determining the robot workspace // Advances in Optimization and Applications. OPTIMA 2020. Communications in Computer and Information Science, volume 1340, Springer, Cham, 2020, pp. 27–37. doi:10.1007/978-3-030-65739-0_3., Rybak L., Malyshev D., Gaponenko E. Optimization algorithm for approximating the solutions set of nonlinear inequalities systems in the problem of determining the robot workspace. Advances in Optimization and Applications. OPTIMA 2020. Communications in Computer and Information Science, volume 1340, Springer, Cham, 2020. Pp. 27–37. doi:10.1007/978-3-030-65739-0_3.