OPTIMIZATION OF THE DESIGN PARAMETERS OF ROBOTIC MOBILITY PLATFORMS FOR TRAINING MACHINE OPERATORS ON THE SIMULATOR AND THE IMPLEMENTATION OF THE REQUIRED TRAJECTORIES

Author:

Hurtasenko A.1,Chuev K.1,Voloshkin A.1,Cherednikov I.1,Gavrilov D.1

Affiliation:

1. Belgorod State Technological University named after V.G. Shukhov

Abstract

The article discusses and analyzes various options for the design of robotic mobility platforms (RMP), which can be used as part of complete test benches and simulators for training operators of various equipment. Various trajectories of movement of the mobile platform of the RMP are considered. Investigations have been carried out based on a parameterized simulation model (MSC Adams) to determine the optimal location of the attachment points of the joints in the upper movable platform. Minimization of the force parameters in the reactions of the corresponding supports was chosen as an optimization criterion in this case. All the accepted trajectories were worked out during the investigation. Various options of the relative position of the joints of the base and the upper movable platform of the RMP have been investigated. Similarly, for the selected trajectories, an investigation and analysis of the force parameters arising in the joints at different main diameters of the location of the base and upper movable platform joints were carried out. As an initial main version, an option was adopted with the arrangement of the joint supports taken as the optimal one. Modeling and search for the most optimal execution options are carried out based on the developed digital simulation model of the RMP in the MSC Adams system. The results of mathematical and simulation modeling are presented.

Publisher

BSTU named after V.G. Shukhov

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference20 articles.

1. Kong H., Gosselin C.M. Type Synthesis of Parallel Mechanisms. Berlin: Springer. 2007. 276 p. doi:10.1007/978-3-540-71990-8, Kong H., Gosselin C.M. Type Synthesis of Parallel Mechanisms. H. Kong, C.M. Gosselin. Berlin: Springer. 2007. 276 p. doi:10.1007/978-3-540-71990-8

2. Merlet J.-P. Parallel Robots. Berlin: Springer. 2007. 402 p., Merlet J.-P. Parallel Robots, 2nd ed. J.-P. Merlet. Berlin: Springer. 2007. 402 p.

3. Rybak L., Khalapyan S., Gaponenko E. Issues of planning trajectory of parallel robots taking into account zones of singularity // IOP Conference Series-Materials Science and Engineering. 2018. No. 327. 042092. doi:10.1088/1757-899X/327/4/042092, Rybak L., Khalapyan S., Gaponenko E. Issues of planning trajectory of parallel robots taking into account zones of singularity. IOP Conference Series-Materials Science and Engineering. 2018. No. 327: 042092. doi:10.1088/1757-899X/327/4/042092

4. Чурин В.В. Использование компьютерных тренажеров для подготовки рабочих дорожно-строительных профессий // Молодой ученый. 2011. Т.3. № 4. С. 28–29., Churin V.V. The use of computer simulators for training workers in road-building professions [Ispol'zovaniye komp'yuternykh trenazherov dlya podgotovki rabochikh dorozhno-stroitel'nykh professiy]. Young Scientist. 2011. Vol. 3. Iss. 4. Pp. 28–29. (rus)

5. Rybak L., Malyshev D., Gaponenko E. Optimization algorithm for approximating the solutions set of nonlinear inequalities systems in the problem of determining the robot workspace // Advances in Optimization and Applications. OPTIMA 2020. Communications in Computer and Information Science, volume 1340, Springer, Cham, 2020, pp. 27–37. doi:10.1007/978-3-030-65739-0_3., Rybak L., Malyshev D., Gaponenko E. Optimization algorithm for approximating the solutions set of nonlinear inequalities systems in the problem of determining the robot workspace. Advances in Optimization and Applications. OPTIMA 2020. Communications in Computer and Information Science, volume 1340, Springer, Cham, 2020. Pp. 27–37. doi:10.1007/978-3-030-65739-0_3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3