Smoothing in linear multicompartment biological processes subject to stochastic input

Author:

Browning Alexander P.1ORCID,Jenner Adrianne L.2ORCID,Baker Ruth E.1ORCID,Maini Philip K.1ORCID

Affiliation:

1. Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

2. School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia

Abstract

Many physical and biological systems rely on the progression of material through multiple independent stages. In viral replication, for example, virions enter a cell to undergo a complex process comprising several disparate stages before the eventual accumulation and release of replicated virions. While such systems may have some control over the internal dynamics that make up this progression, a challenge for many is to regulate behavior under what are often highly variable external environments acting as system inputs. In this work, we study a simple analog of this problem through a linear multicompartment model subject to a stochastic input in the form of a mean-reverting Ornstein-Uhlenbeck process, a type of Gaussian process. By expressing the system as a multidimensional Gaussian process, we derive several closed-form analytical results relating to the covariances and autocorrelations of the system, quantifying the smoothing effect discrete compartments afford multicompartment systems. Semianalytical results demonstrate that feedback and feedforward loops can enhance system robustness, and simulation results probe the intractable problem of the first passage time distribution, which has specific relevance to eventual cell lysis in the viral replication cycle. Finally, we demonstrate that the smoothing seen in the process is a consequence of the discreteness of the system, and does not manifest in systems with continuous transport. While we make progress through analysis of a simple linear problem, many of our insights are applicable more generally, and our work enables future analysis into multicompartment processes subject to stochastic inputs. Published by the American Physical Society 2024

Funder

Mathematical Institute, University of Oxford

Simons Foundation

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3