Integrate-and-fire model of disease transmission

Author:

Hussain Shahbanno A.1ORCID,Meine David C. A.1ORCID,Vvedensky Dimitri D.1ORCID

Affiliation:

1. Imperial College London

Abstract

We create an epidemiological susceptible-infected-susceptible model of disease transmission using integrate-and-fire nodes on a network, allowing memory of previous interactions and infections. Agents in the network sum infectious matter from their nearest neighbors at every time step, until they exceed their infection threshold, at which point they “fire” and become infected for as long as the recovery time. The model has memory of previous interactions by tracking the amount of infectious matter carried by agents as well as just binary infected or susceptible states, and the model has memory of previous infections by modeling immunity as increasing the infection threshold after recovery. Creating a simulation of the model on networks with a power-law degree distribution and homogeneous agent parameters, we find a single strain version of the model matches well with the England COVID-19 case data, with a root-mean-squared error of 0.014%. A simulation of a multistrain version of the model (where there is cross-strain immunity) matches well with the influenza strain A and strain B case numbers in Canada, with a root-mean-squared error of 0.002% and 0.0012%, respectively, though due to the coupling in the model, both strains peak in phase. Since the dynamics of the model successfully capture real-life transmission dynamics, we test interventions to study their effect on case numbers, with both quarantining and social gathering restrictions lowering the peak. Since the model has memory, the stricter the intervention, the higher the secondary peak when the restriction is removed, showing that interventions change only the shape of the curves and not the overall number infected in the population. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrate-and-fire model of disease transmission;Physical Review E;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3