Combining resonant and tail-based anomaly detection

Author:

Bickendorf Gerrit1ORCID,Drees Manuel1,Kasieczka Gregor2,Krause Claudius3ORCID,Shih David4ORCID

Affiliation:

1. Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn, Germany

2. Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

3. Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany

4. New High Energy Theory Center, Rutgers University Piscataway, New Jersey 08854-8019, USA

Abstract

In many well-motivated models of the electroweak scale, cascade decays of new particles can result in highly boosted hadronic resonances (e.g., Z/W/h). This can make these models rich and promising targets for recently developed resonant anomaly detection methods powered by modern machine learning. We demonstrate this using the state-of-the-art classifying anomalies through outer density estimation () method applied to supersymmetry scenarios with gluino pair production. We show that , despite being model agnostic, is nevertheless competitive with dedicated cut-based searches, while simultaneously covering a much wider region of parameter space. The gluino events also populate the tails of the missing energy and HT distributions, making this a novel combination of resonant and tail-based anomaly detection. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Baden-Württemberg Stiftung

Deutsche Forschungsgemeinschaft

Publisher

American Physical Society (APS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3