Fermion self-energy and damping rate in a hot magnetized plasma

Author:

Ghosh Ritesh1ORCID,Shovkovy Igor A.12ORCID

Affiliation:

1. College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA

2. Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

Abstract

We derive a general expression for the fermion self-energy in a hot magnetized plasma by using the Landau-level representation. In the one-loop approximation, the Dirac structure of the self-energy is characterized by five different functions that depend on the Landau-level index n and the longitudinal momentum pz. We derive general expressions for all five functions and obtain closed-form expressions for their imaginary parts. The latter receive contributions from three types of on shell processes, which are interpreted in terms of Landau-level transitions, accompanied by a single photon (gluon) emission or absorption. By making use of the imaginary parts of the self-energy functions, we also derive the Landau-level dependent fermion damping rates Γn(pz) and study them numerically in a wide range of model parameters. We also demonstrate that the two-spin degeneracy of the Landau levels is lifted by the one-loop self-energy corrections. While the spin splitting of the damping rates is small, it may be important for some spin and chiral effects. We argue that the general method and the numerical results for the rates can have interesting applications in heavy-ion physics, astrophysics, and cosmology, where strongly magnetized QED or QCD plasmas are ubiquitous. Published by the American Physical Society 2024

Funder

National Science Foundation

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3