Postselection-Free Learning of Measurement-Induced Quantum Dynamics

Author:

McGinley Max1ORCID

Affiliation:

1. T.C.M. Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom

Abstract

We address how one can empirically infer properties of quantum states generated by dynamics involving measurements. Our focus is on many-body settings where the number of measurements is extensive, making brute-force approaches based on postselection intractable due to their exponential sample complexity. We introduce a general-purpose scheme that can be used to infer any property of the postmeasurement ensemble of states (e.g., the average entanglement entropy, or frame potential) using a scalable number of experimental repetitions. We first identify a general class of “estimable properties” that can be directly extracted from experimental data. Then, based on empirical observations of such quantities, we show how one can indirectly infer information about any particular given nonestimable quantity of interest through classical postprocessing. Our approach is based on an optimization task, where one asks what are the minimum and maximum values that the desired quantity could possibly take, while ensuring consistency with observations. The true value of this quantity must then lie within a feasible range between these extrema, resulting in two-sided bounds. Narrow feasible ranges can be obtained by using a classical simulation of the device to determine which estimable properties one should measure. Even in cases where this simulation is inaccurate, unambiguous information about the true value of a given quantity realized on the quantum device can be learned. As an immediate application, we show that our method can be used to verify the emergence of quantum state designs in experiments. We identify some fundamental obstructions that in some cases prevent sharp knowledge of a given quantity from being inferred, and discuss what can be learned in cases where classical simulation is too computationally demanding to be feasible. In particular, we prove that any observer who cannot perform a classical simulation cannot distinguish the output states from those sampled from a maximally structureless ensemble. Published by the American Physical Society 2024

Funder

Trinity College, Cambridge

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3