Dynamical Magic Transitions in Monitored Clifford+ T Circuits

Author:

Bejan Mircea1,McLauchlan Campbell2ORCID,Béri Benjamin12

Affiliation:

1. Cavendish Laboratory, University of Cambridge

2. DAMTP, University of Cambridge

Abstract

The classical simulation of highly entangling quantum dynamics is conjectured to be generically hard. Thus, recently discovered measurement-induced transitions between highly entangling and low-entanglement dynamics are phase transitions in classical simulability. Here, we study simulability transitions beyond entanglement: noting that some highly entangling dynamics (e.g., integrable systems or Clifford circuits) are easy to classically simulate, thus requiring “magic”—a subtle form of quantum resource—to achieve computational hardness, we ask how the dynamics of magic competes with measurements. We study the resulting “dynamical magic transitions” focusing on random monitored Clifford circuits doped by T gates (injecting magic). We identify dynamical “stabilizer purification”—the collapse of a superposition of stabilizer states by measurements—as the mechanism driving this transition. We find cases where transitions in magic and entanglement coincide, but also others with a magic and simulability transition in a highly (volume-law) entangled phase. In establishing our results, we use Pauli-based computation, a scheme distilling the quantum essence of the dynamics to a magic state register subject to mutually commuting measurements. We link stabilizer purification to “magic fragmentation” wherein these measurements separate into disjoint, O(1)-weight blocks, and relate this to the spread of magic in the original circuit becoming arrested. Published by the American Physical Society 2024

Funder

EPSRC

STFC DiRAC

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3