Competition of decoherence and quantum speed limits for quantum-gate fidelity in the Jaynes-Cummings model

Author:

Pratapsi Sagar Silva12ORCID,Buffoni Lorenzo3ORCID,Gherardini Stefano435ORCID

Affiliation:

1. University of Lisbon

2. Instituto de Telecomunicações

3. University of Florence

4. CNR-INO

5. ICTP

Abstract

Quantum computers are operated by external driving fields, such as lasers, microwaves, or transmission lines, that execute logical operations on multiqubit registers, leaving the system in a pure state. However, the drive and the logical system might become correlated in such a way that, after tracing out the degrees of freedom of the driving field, the output state will not be pure. Previous works have pointed out that the resulting error scales inversely with the energy of the drive, thus imposing a limit on the energy efficiency of quantum computing. In this study, focusing on the Jaynes-Cummings model, we show how the same scaling can be seen as a consequence of two competing phenomena: the entanglement-induced error, which grows with time, and a minimal time for computation imposed by quantum speed limits. This evidence is made possible by quantifying, at any time, the computation error via the spectral radius associated with the density operator of the logical qubit. Moreover, we also prove that, in order to attain a given target state at a chosen fidelity, it is energetically more efficient to perform a single driven evolution of the logical qubits rather than to split the computation in subroutines, each operated by a dedicated pulse. Published by the American Physical Society 2024

Funder

'la Caixa' Foundation

Ministero dell'Università e della Ricerca

European Commission

Royal Society

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3