The future of quantum computing with superconducting qubits

Author:

Bravyi Sergey1,Dial Oliver1,Gambetta Jay M.1,Gil Darío1,Nazario Zaira1ORCID

Affiliation:

1. IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA

Abstract

For the first time in history, we are seeing a branching point in computing paradigms with the emergence of quantum processing units (QPUs). Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology. Meanwhile, achieving a computational advantage in the near term may be possible by combining multiple QPUs through circuit knitting techniques, improving the quality of solutions through error suppression and mitigation, and focusing on heuristic versions of quantum algorithms with asymptotic speedups. For this to happen, the performance of quantum computing hardware needs to improve and software needs to seamlessly integrate quantum and classical processors together to form a new architecture that we are calling quantum-centric supercomputing. In the long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes, modular architectures for scaling QPUs and parallelizing workloads, and software that evolves to make the intricacies of the technology invisible to the users and realize the goal of ubiquitous, frictionless quantum computing.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference135 articles.

1. See https://newsroom.ibm.com/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology-Opening-a-New-Frontier-for-Semiconductors for “IBM unveils world’s first 2 nanometer chip technology, opening a new frontier for semiconductors.”

2. A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey of machine learning accelerators,” in 2020 IEEE High Performance Extreme Computing Conference (HPEC) (IEEE, 2020), pp. 1–12.

3. Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors

4. Quantum Algorithm for Linear Systems of Equations

5. P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE, 1994), pp. 124–134.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3