Affiliation:
1. University of Melbourne
2. Data61
Abstract
Syndrome decoding is an integral but computationally demanding step in the implementation of quantum error correction for fault-tolerant quantum computing. Here, we report the development and benchmarking of Artificial Neural Network (ANN) decoding on IBM quantum processors. We demonstrate that ANNs can efficiently decode syndrome measurement data from heavy-hexagonal code architecture and apply appropriate corrections to facilitate error protection. The current physical error rates of IBM devices are above the code's threshold and restrict the scope of our ANN decoder for logical error rate suppression. However, our work confirms the applicability of ANN decoding methods of syndrome data retrieved from experimental devices and establishes machine learning as a promising pathway for quantum error correction when quantum devices with below threshold error rates become available in the near future.
Published by the American Physical Society
2024
Funder
University of Melbourne
National Computational Infrastructure
Pawsey Supercomputing Research Center
National Computational Merit Allocation Scheme
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献