Self-consistent sharp interface theory of active condensate dynamics

Author:

Goychuk Andriy12ORCID,Demarchi Leonardo13ORCID,Maryshev Ivan1,Frey Erwin14ORCID

Affiliation:

1. Ludwig-Maximilians-Universität München

2. Massachusetts Institute of Technology

3. Sorbonne Université

4. Max Planck School

Abstract

Biomolecular condensates help organize the cell cytoplasm and nucleoplasm into spatial compartments with different chemical compositions. A key feature of such compositional patterning is the local enrichment of enzymatically active biomolecules which, after transient binding via molecular interactions, catalyze reactions among their substrates. Thereby, biomolecular condensates provide a spatial template for nonuniform concentration profiles of substrates. In turn, the concentration profiles of substrates, and their molecular interactions with enzymes, drive enzyme fluxes which can enable novel nonequilibrium dynamics. To analyze this generic class of systems, with a current focus on self-propelled droplet motion, we here develop a self-consistent sharp interface theory. In our theory, we diverge from the usual bottom-up approach, which involves calculating the dynamics of concentration profiles based on a given chemical potential gradient. Instead, reminiscent of control theory, we take the reverse approach by deriving the chemical potential profile and enzyme fluxes required to maintain a desired condensate form and dynamics. The chemical potential profile and currents of enzymes come with a corresponding power dissipation rate, which allows us to derive a thermodynamic consistency criterion for the passive part of the system (here, reciprocal enzyme-enzyme interactions). As a first-use case of our theory, we study the role of reciprocal interactions, where the transport of substrates due to reactions and diffusion is, in part, compensated by redistribution due to molecular interactions. More generally, our theory applies to mass-conserved active matter systems with moving phase boundaries. Published by the American Physical Society 2024

Funder

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

National Science Foundation

European Molecular Biology Organization

H2020 Marie Skłodowska-Curie Actions

Bundesministerium für Bildung und Forschung

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3