Fate of initially bound timelike geodesics in spherical boson stars

Author:

Zhang Yu-Peng11,Sun Shi-Xian11,Wang Yong-Qiang11,Wei Shao-Wen11,Laguna Pablo2,Liu Yu-Xiao11ORCID

Affiliation:

1. Lanzhou University

2. University of Texas at Austin

Abstract

Boson stars are horizonless compact objects and they could possess novel geodesic orbits under the equilibrium assumption, which differ from those in black hole backgrounds. However, unstable boson stars may collapse into black holes or migrate to stable states, resulting in an inability to maintain the initially bound geodesic orbits within the backgrounds of unstable boson stars. To elucidate the fate of initially bound geodesic orbits in boson stars, we present a study of geodesics within the spherical space times of stable, collapsing, and migrating boson stars. We focus on timelike geodesics that are initially circular or reciprocating. We verify that orbits initially bound within a stable boson star persist in their bound states. For a collapsing boson star, we show that orbits initially bound and reciprocating finally either become unbound or plunge into the newly formed black hole, depending on their initial maximal radii. For initially circular geodesics, we have discovered the existence of a critical radius. Orbits with radii below this critical value are found to plunge into the newly formed black hole, whereas those with radii larger than the critical radius continue to orbit around the vicinity of the newly formed black hole, exhibiting nonzero eccentricities. For the migrating case, a black hole does not form. In this case, the reciprocating orbits span a wider radial range. For initially circular geodesics, orbits with small radii become unbound, and orbits with large radii remain bound with nonvanishing eccentricities. This geodesic study provides an approach to investigating the gravitational collapse and migration of boson stars. Published by the American Physical Society 2024

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Science Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3