Non-Bloch theory for spatiotemporal photonic crystals assisted by continuum effective medium

Author:

Ding Haozhi1,Ding Kun1ORCID

Affiliation:

1. Fudan University

Abstract

As one indispensable type of nonreciprocal mechanism, a system with temporal modulations is intrinsically open in the physical sense and inevitably non-Hermitian, but the space and time degrees of freedom are nonseparable in a large variety of circumstances, which restrains the application of the non-Bloch band theory. Here, we investigate the spatially photonic crystals (PhCs) composed of spatiotemporal modulation materials (STMs) and homogeneous media, dubbed as the STMPhC, wherein the spatial and temporal modulations are deliberately designed to be correlated. To bypass the difficulty of the spatiotemporal correlation, we first employ the effective medium theory to account for the dispersion of fundamental bands under the influence of Floquet sidebands. Based on the continuum generalized Brillouin zone condition, we then analytically give the criteria for the existence of the non-Hermitian skin effect in the STM. Assisted by developing a numerical method that embeds the plane wave expansion in the transfer matrix, we establish the non-Bloch band theory for the low-frequency Floquet bands in the STMPhCs, in which the identification of the generalized Brillouin zone is central. We finally delve into the topological properties, including non-Bloch Zak phases and non-Bloch bulk-boundary correspondence. Our work validates the idea that the effective medium assists the non-Bloch band theory applied to the STMPhCs, which delivers a prescription to broaden the horizons of non-Bloch theory. Published by the American Physical Society 2024

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3