Abstract
A slender object undergoing an axial compression will buckle to alleviate the stress. Typically the morphology of the deformed object depends on the bending stiffness for solids, or the viscoelastic properties for liquid threads. We study a chain of uniform sticky air bubbles that rise due to buoyancy through an aqueous bath. A buckling instability of the bubble chain with a characteristic wavelength is observed. If a chain of bubbles is produced faster than it is able to rise, the dominance of viscous drag over buoyancy results in a compressive stress that is alleviated by buckling the bubble chain. Using low Reynolds-number hydrodynamics, we predict the critical buckling speed, the terminal speed of a buckled chain, and the geometry of the buckles.
Published by the American Physical Society
2024
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献