Utilizing network analysis to explore student qualitative inferential reasoning chains

Author:

Speirs J. Caleb1ORCID,Stetzer MacKenzie R.2ORCID,Lindsey Beth A.3ORCID

Affiliation:

1. Department of Physics, University of North Florida, Jacksonville, Florida 32224-7699, USA

2. Department of Physics and Astronomy and Maine Center for Research in STEM Education, University of Maine, Orono, Maine 04469, USA

3. Department of Physics, Penn State Greater Allegheny, McKeesport, Pennsylvania 15132, USA

Abstract

Over the course of the introductory calculus-based physics course, students are often expected to build conceptual understanding and develop and refine skills in problem solving and qualitative inferential reasoning. Many of the research-based materials developed over the past 30 years by the physics education research community use sequences of scaffolded questions to step students through a qualitative inferential reasoning chain. It is often tacitly assumed that, in addition to building conceptual understanding, such materials improve qualitative reasoning skills. However, clear documentation of the impact of such materials on qualitative reasoning skills is critical. New methodologies are needed to better study reasoning processes and to disentangle, to the extent possible, processes related to physics content from processes general to all human reasoning. As a result, we have employed network analysis methodologies to examine student responses to reasoning-related tasks in order to gain deeper insight into the nature of student reasoning in physics. In this paper, we show that network analysis metrics are both interpretable and valuable when applied to student reasoning data generated from . We also demonstrate that documentation of improvements in the articulation of specific lines of reasoning can be obtained from a network analysis of responses to reasoning chain construction tasks. Published by the American Physical Society 2024

Funder

National Science Foundation

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3