Robust Effective Ground State in a Nonintegrable Floquet Quantum Circuit

Author:

Ikeda Tatsuhiko N.12ORCID,Sugiura Sho345,Polkovnikov Anatoli2

Affiliation:

1. RIKEN Center for Quantum Computing

2. Boston University

3. Blocq, Inc.

4. NTT Research, Inc.

5. Massachusetts Institute of Technology

Abstract

An external periodic (Floquet) drive is believed to bring any initial state to the featureless infinite temperature state in generic nonintegrable isolated quantum many-body systems in the thermodynamic limit, irrespective of the driving frequency Ω. However, numerical or analytical evidence either proving or disproving this hypothesis is very limited and the issue has remained unsettled. Here, we study the initial state dependence of Floquet heating in a nonintegrable kicked Ising chain of length up to L=30 with an efficient quantum circuit simulator, showing a possible counterexample: the ground state of the effective Floquet Hamiltonian is exceptionally robust against heating, and could stay at finite energy density even after infinitely many Floquet cycles, if the driving period is shorter than a threshold value. This sharp energy localization transition or crossover does not happen for generic excited states. The exceptional robustness of the ground state is interpreted by (i) its isolation in the energy spectrum and (ii) the fact that those states with L-independent Ω energy above the ground state energy of any generic local Hamiltonian, like the approximate Floquet Hamiltonian, are atypical and viewed as a collection of noninteracting quasiparticles. Our finding paves the way for engineering Floquet protocols with finite driving periods realizing long-lived, or possibly even perpetual, Floquet phases by initial state design. Published by the American Physical Society 2024

Funder

Japan Science and Technology Corporation

Precursory Research for Embryonic Science and Technology

Japan Society for the Promotion of Science

National Science Foundation

Air Force Office of Scientific Research

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3