Device-Independent Quantum Key Distribution with Arbitrarily Small Nonlocality

Author:

Wooltorton Lewis12ORCID,Brown Peter3ORCID,Colbeck Roger1ORCID

Affiliation:

1. Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

2. Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom

3. Télécom Paris—LTCI, Inria, Institut Polytechnique de Paris, 19 Place Marguerite Perey, 91120 Palaiseau, France

Abstract

Device-independent quantum key distribution allows two users to set up shared cryptographic key without the need to trust the quantum devices used. Doing so requires nonlocal correlations between the users. However, in Farkas [] it was shown that for known protocols nonlocality is not always sufficient, leading to the question of whether there is a fundamental lower bound on the minimum amount of nonlocality needed for any device-independent quantum key distribution implementation. Here, we show that no such bound exists, giving schemes that achieve key with correlations arbitrarily close to the local set. Furthermore, some of our constructions achieve the maximum of 1 bit of key per pair of entangled qubits. We achieve this by studying a family of Bell inequalities that constitute all self-tests of the maximally entangled state with a single linear Bell expression. Within this family there exist nonlocal correlations with the property that one pair of inputs yield outputs arbitrarily close to perfect key. Such correlations exist for a range of Clauser-Horne-Shimony-Holt values, including those arbitrarily close to the classical bound. Finally, we show the existence of quantum correlations that can generate both perfect key and perfect randomness simultaneously, while also displaying arbitrarily small Clauser-Horne-Shimony-Holt violation. This opens up the possibility of a new class of cryptographic protocol. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Horizon 2020 Framework Programme

Quantum Secure Networks Partnership

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3