First Search for Dark-Trident Processes Using the MicroBooNE Detector

Author:

Abratenko P.1,Alterkait O.1,Andrade Aldana D.2,Arellano L.3,Asaadi J.4,Ashkenazi A.5,Balasubramanian S.6,Baller B.6,Barr G.7,Barrow D.7,Barrow J.895,Basque V.6,Benevides Rodrigues O.2,Berkman S.610,Bhanderi A.3,Bhat A.11,Bhattacharya M.6,Bishai M.12,Blake A.13,Bogart B.14,Bolton T.15,Book J. Y.16,Brunetti M. B.17,Camilleri L.18,Cao Y.3,Caratelli D.19,Cavanna F.6,Cerati G.6,Chappell A.17,Chen Y.20,Conrad J. M.8,Convery M.20,Cooper-Troendle L.21,Crespo-Anadón J. I.22,Cross R.17,Del Tutto M.6,Dennis S. R.23,Detje P.23,Devitt A.13,Diurba R.24,Djurcic Z.25,Dorrill R.2,Duffy K.7,Dytman S.21,Eberly B.26,Englezos P.27,Ereditato A.116,Evans J. J.3,Fine R.28,Finnerud O. G.3,Foreman W.2,Fleming B. T.11,Franco D.11,Furmanski A. P.9,Gao F.19,Garcia-Gamez D.29,Gardiner S.6,Ge G.18,Gollapinni S.28,Gramellini E.3,Green P.7,Greenlee H.6,Gu L.13,Gu W.12,Guenette R.3,Guzowski P.3,Hagaman L.11,Hen O.8,Hilgenberg C.9,Horton-Smith G. A.15,Imani Z.1,Irwin B.9,Ismail M. S.21,James C.6,Ji X.30,Jo J. H.12,Johnson R. A.31,Jwa Y.-J.18,Kalra D.18,Kamp N.8,Karagiorgi G.18,Ketchum W.6,Kirby M.126,Kobilarcik T.6,Kreslo I.24,Leibovitch M. B.19,Lepetic I.27,Li J.-Y.32,Li K.33,Li Y.12,Lin K.27,Littlejohn B. R.2,Liu H.12,Louis W. C.28,Luo X.19,Mariani C.34,Marsden D.3,Marshall J.17,Martinez N.15,Martinez Caicedo D. A.35,Martynenko S.12,Mastbaum A.27,Mawby I.17,McConkey N.36,Meddage V.15,Micallef J.81,Miller K.11,Mogan A.37,Mohayai T.638,Mooney M.37,Moor A. F.23,Moore C. D.6,Mora Lepin L.3,Moudgalya M. M.3,Mulleriababu S.24,Naples D.21,Navrer-Agasson A.3,Nayak N.12,Nebot-Guinot M.32,Nowak J.13,Oza N.18,Palamara O.6,Pallat N.9,Paolone V.21,Papadopoulou A.25,Papavassiliou V.39,Parkinson H. B.32,Pate S. F.39,Patel N.13,Pavlovic Z.6,Piasetzky E.5,Pophale I.13,Qian X.12,Raaf J. L.6,Radeka V.12,Rafique A.25,Reggiani-Guzzo M.323,Ren L.39,Rochester L.20,Rodriguez Rondon J.35,Rosenberg M.1,Ross-Lonergan M.28,Rudolf von Rohr C.24,Safa I.18,Scanavini G.33,Schmitz D. W.11,Schukraft A.6,Seligman W.18,Shaevitz M. H.18,Sharankova R.6,Shi J.23,Snider E. L.6,Soderberg M.40,Söldner-Rembold S.3,Spitz J.14,Stancari M.6,John J. St.6,Strauss T.6,Szelc A. M.32,Tang W.41,Taniuchi N.23,Terao K.20,Thorpe C.3,Torbunov D.12,Totani D.19,Toups M.6,Tsai Y.-T.20,Tyler J.15,Uchida M. A.23,Usher T.20,Viren B.12,Weber M.24,Wei H.42,White A. J.11,Wolbers S.6,Wongjirad T.1,Wospakrik M.6,Wresilo K.23,Wu W.21,Yandel E.19,Yang T.6,Yates L. E.6,Yu H. W.12,Zeller G. P.6,Zennamo J.6,Zhang C.12,

Affiliation:

1. Tufts University

2. Illinois Institute of Technology (IIT)

3. The University of Manchester

4. University of Texas

5. Tel Aviv University

6. Fermi National Accelerator Laboratory (FNAL)

7. University of Oxford

8. Massachusetts Institute of Technology (MIT)

9. University of Minnesota

10. Michigan State University

11. University of Chicago

12. Brookhaven National Laboratory (BNL)

13. Lancaster University

14. University of Michigan

15. Kansas State University (KSU)

16. Harvard University

17. University of Warwick

18. Columbia University

19. University of California

20. SLAC National Accelerator Laboratory

21. University of Pittsburgh

22. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)

23. University of Cambridge

24. Universität Bern

25. Argonne National Laboratory (ANL)

26. University of Southern Maine

27. Rutgers University

28. Los Alamos National Laboratory (LANL)

29. Universidad de Granada

30. Nankai University

31. University of Cincinnati

32. University of Edinburgh

33. Yale University

34. Virginia Tech

35. South Dakota School of Mines and Technology (SDSMT)

36. University College London

37. Colorado State University

38. Indiana University

39. New Mexico State University (NMSU)

40. Syracuse University

41. University of Tennessee

42. Louisiana State University

Abstract

We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to 7.2×1020 protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produce π0 and η mesons, which could decay into dark-matter (DM) particles mediated via a dark photon A. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameter ϵ2 as a function of the dark-photon mass in the range 10MA400MeV. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particles χ for two benchmark models with mass ratios Mχ/MA=0.6 and 2 and for dark fine-structure constants 0.1αD1. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

High Energy Physics

National Science Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Science and Technology Facilities Council

Royal Society

Fermi Research Alliance

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3