Abstract
Dynamical decoupling and Hamiltonian engineering are well-established techniques that have been used to control qubit systems. However, designing the corresponding methods for qudit systems has been challenging due to the lack of a Bloch sphere representation, more complex interactions, and additional control constraints. By identifying several general structures associated with such problems, we develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems. Our formalism significantly simplifies qudit pulse-sequence design while naturally incorporating robustness conditions necessary for experimental practicality. We experimentally demonstrate these techniques in a strongly interacting, disordered ensemble of spin-1 nitrogen-vacancy centers, achieving more than an order-of-magnitude improvement in coherence time over existing pulse sequences. We further describe how our techniques enable the engineering of exotic many-body phenomena such as quantum many-body scars, and open up new opportunities for quantum metrology with enhanced sensitivities. These results enable wide-reaching new applications for dynamical decoupling and Hamiltonian engineering in many-body physics and quantum metrology.
Published by the American Physical Society
2024
Funder
Gordon and Betty Moore Foundation
Defense Advanced Research Projects Agency
National Science Foundation
Center for Ultracold Atoms
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献