Affiliation:
1. Technical University Munich
2. Potsdam Institute for Climate Impact Research
Abstract
Detection of critical slowing down (CSD) is the dominant avenue for anticipating critical transitions from noisy time-series data. Most commonly, changes in variance and lag-1 autocorrelation [AC(1)] are used as CSD indicators. However, these indicators will only produce reliable results if the noise driving the system is white and stationary. In the more realistic case of time-correlated red noise, increasing (decreasing) the correlation of the noise will lead to spurious (masked) alarms for both variance and AC(1). Here, we propose two new methods that can discriminate true CSD from possible changes in the driving noise characteristics. We focus on estimating changes in the linear restoring rate based on Langevin-type dynamics driven by either white or red noise. We assess the capacity of our new estimators to anticipate critical transitions and show that they perform significantly better than other existing methods both for continuous-time and discrete-time models. In addition to conceptual models, we apply our methods to climate model simulations of the termination of the African Humid Period. The estimations rule out spurious signals stemming from nonstationary noise characteristics and reveal a destabilization of the African climate system as the dynamical mechanism underlying this archetype of abrupt climate change in the past.
Published by the American Physical Society
2024
Funder
Horizon 2020 Framework Programme
HORIZON EUROPE Marie Sklodowska-Curie Actions
Publisher
American Physical Society (APS)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献