Abstract
AbstractThis short review presents an overview of visible-light-driven asymmetric catalysis by chiral complexes of first-row transition metals. The processes described here include dual catalysis by a chiral complex of copper, nickel, cobalt, or chromium and an additional photoredox or energy-transfer catalyst, and bifunctional catalysis by a single chiral copper or nickel catalyst. These methods allow valuable transformations with high functional group compatibility. They provide stereoselective construction of carbon–carbon or carbon–heteroatom bonds under mild conditions, and produce a diverse range of previously unknown enantioenriched compounds.1 Introduction2 Nickel-Based Photocatalytic Asymmetric Catalysis3 Copper-Based Photocatalytic Asymmetric Catalysis4 Photocatalytic Asymmetric Catalysis by Chiral Complexes of Cobalt or Chromium5 Conclusion
Funder
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Fujian Province
National Natural Science Foundation of China
Subject
Organic Chemistry,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献