Magnetic CoFe1.95Y0.05O4-Decorated Ag3PO4 as Superior and Recyclable Photocatalyst for Dye Degradation

Author:

Liu Qingwang1,Xu Mai1,Meng Ying1,Chen Shikun1,Yang Shiliu1ORCID

Affiliation:

1. School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China

Abstract

The Ag3PO4/CoFe1.95Y0.05O4 nanocomposite with magnetic properties was simply synthesized by the hydrothermal method. The structure and morphology of the prepared material were characterized, and its photocatalytic activity for degradation of the methylene blue and rhodamine B dyes was also tested. It was revealed that the Ag3PO4 in the nanocomposite exhibited a smaller size and higher efficiency in degrading dyes than the individually synthesized Ag3PO4 when exposed to light. Furthermore, the magnetic properties of CoFe1.95Y0.05O4 enabled the nanocomposite to possess magnetic separation capabilities. The stable crystal structure and effective degradation ability of the nanocomposite were demonstrated through cyclic degradation experiments. It was shown that Ag3PO4/CoFe1.95Y0.05O4–0.2 could deliver the highest activity and stability in degrading the dyes, and 98% of the dyes could be reduced within 30 min. Additionally, the photocatalytic enhancement mechanism and cyclic degradation stability of the magnetic nanocomposites were also proposed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Provincial Department of Education

Scientific Research Start-up Foundation of Huainan Normal University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3