Synthesis of Amylosic Supramolecular Materials by Glucan Phosphorylase-Catalyzed Enzymatic Polymerization According to the Vine-Twining Approach

Author:

Kadokawa Jun-ichi1

Affiliation:

1. Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University

Abstract

This article overviews the synthesis of amylosic supramolecular materials through inclusion complexation in glucan phosphorylase (GP)-catalyzed enzymatic polymerization. Amylose is a polysaccharide that is known to form inclusion complexes with a number of hydrophobic small guest molecules. A pure amylose can be synthesized by the enzymatic polymerization of α-d-glucose 1-phosphate monomer with a maltooligosaccharide primer catalyzed by GP. The author has reported that the propagating amylosic chain in the enzymatic polymerization twines around hydrophobic polymers present in aqueous reaction media to form supramolecular inclusion complexes. As it is similar to the way that vines of a plant grow around a rod, this polymerization is termed ‘vine-twining polymerization’. Amylosic supramolecular network materials have been obtained through the vine-twining polymerization by using copolymers, where hydrophobic guest polymers are covalently grafted on hydrophilic main-chain polymers. The enzymatically produced amylosic chains form complexes with the guest polymers among graft copolymers, which act as cross-linking points to form supramolecular networks, resulting in the formation of soft materials, such as gels and films. Vine-twining polymerization using appropriately designed guest polymers has also been performed, which leads to supramolecular products that exhibit new functionality.1 Introduction2 Vine-Twining Polymerization to Form Supramolecular Inclusion Complexes3 Selective Complexation of Amylose toward Guest Polymers in Vine-Twining Polymerization4 Hierarchical Architecture of Amylosic Supramolecular Network Materials by Vine-Twining Polymerization Approach5 Hierarchical Fabrication of Amylosic Supramolecular Materials by Vine-Twining Polymerization Using Designed Guest Polymers6 Conclusions

Funder

Ministry of Education, Science, Sports and Culture of Japan

Asahi Glass Foundation

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3