Affiliation:
1. UZ Leuven, University Hospital of Leuven, Leuven, Belgium
2. Division Pediatric Pulmonology, Department of Pediatrics, University Hospital of Leuven, Leuven, Belgium
Abstract
AbstractDetailed knowledge of how mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene disturb the trafficking or function of the CFTR protein and the use of high-throughput drug screens have allowed novel therapeutic strategies for cystic fibrosis (CF). The main goal of treatment is slowly but surely shifting from symptomatic management to targeting the underlying CFTR defect to halt disease progression and even to prevent occurrence of CF complications. CFTR potentiators for patients with class III mutations, mutation R117H (and in United States also for patients with specific residual function mutations) and the combination of a CFTR modulator plus a potentiator for patients homozygous for F508del, are the two classes of modulators that are in use in the clinic. Approval of these therapeutics has progressively expanded to include both younger patients and a wider range of CFTR mutations. For a significant proportion of patients with CF, current treatment is however still insufficient or unavailable.This review provides an overview of the clinical trial results and the real-life efficacy data of approved CFTR modulators. In addition, we discuss the entire pipeline of CFTR modulators: novel potentiators and correctors, amplifiers, stabilizers, and read-through agents. Furthermore, we discuss other strategies to improve CFTR function like nonsense-mediated decay inhibitors, modified transfer ribonucleic acids, antisense oligonucleotides, and genetic therapies.CFTR modulators are already changing the face of CF and the pipeline of new therapies continues to be exciting.
Subject
Critical Care and Intensive Care Medicine,Pulmonary and Respiratory Medicine
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献