Homeopathic Potencies May Possess an Electric Field(-like) Component: Evidence from the Use of Encapsulated Solvatochromic Dyes

Author:

Cartwright Steven J.1

Affiliation:

1. DiagnOx Laboratory, Cherwell Innovation Centre, Upper Heyford, Oxon, United Kingdom

Abstract

Background Homeopathic potencies have been shown to interact with a range of solvatochromic dyes to produce spectroscopic changes in the visible region of the electromagnetic spectrum. Furthermore, the nature of the changes observed under different experimental conditions is beginning to limit the number of possible hypotheses that can be put forward regarding the fundamental identity of potencies. Aims and Methods The present study uses β-cyclodextrins to encapsulate solvatochromic dyes of widely varying structures. The purpose of this approach is to de-couple the primary dye–potency interaction from any subsequent aggregation effects. Results Despite large differences in molecular structure between dyes, results show that potencies affect all dyes according to the same fundamental principles. Specifically, positively and negatively solvatochromic dyes collectively respond in opposite and complementary ways to potencies in accordance with the differential stabilisation of their excited and ground electronic states. Under the conditions of encapsulation, positively solvatochromic dyes display a bathochromic shift of, on average, 0.4 nm with a 2% absorbance change, and negatively solvatochromic dyes display a hypsochromic shift of, on average, 0.2 nm with a 1% absorbance change. This behaviour is only ever seen in two situations—where solvent becomes more polar or where an electric field is applied to solutions of dyes. Conclusions The conditions used in this and previous studies to investigate the interaction of potencies with solvatochromic dyes preclude increased polarity of solvent as being responsible for the observed effects and that an explanation in which potencies carry an electric field (or electric field-like) component is by far the more likely. From the magnitude of the spectral changes induced in the dye Brooker's merocyanine by Arsenicum 10M, an estimate of the strength of the postulated electric field of 1.16 × 107 V/m can be made, which is comparable with the potential difference across cell membranes.

Funder

Standard Homeopathic Company/Hylands, USA

Publisher

Georg Thieme Verlag KG

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3