Clinical Decision-Support Systems for Detection of Systemic Inflammatory Response Syndrome, Sepsis, and Septic Shock in Critically Ill Patients: A Systematic Review

Author:

Wulff Antje1,Montag Sara2,Marschollek Michael1,Jack Thomas2

Affiliation:

1. Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover, Germany

2. Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany

Abstract

Abstract Background The design of computerized systems able to support automated detection of threatening conditions in critically ill patients such as systemic inflammatory response syndrome (SIRS) and sepsis has been fostered recently. The increase of research work in this area is due to both the growing digitalization in health care and the increased appreciation of the importance of early sepsis detection and intervention. To be able to understand the variety of systems and their characteristics as well as performances, a systematic literature review is required. Existing reviews on this topic follow a rather restrictive searching methodology or they are outdated. As much progress has been made during the last 5 years, an updated review is needed to be able to keep track of current developments in this area of research. Objectives To provide an overview about current approaches for the design of clinical decision-support systems (CDSS) in the context of SIRS, sepsis, and septic shock, and to categorize and compare existing approaches. Methods A systematic literature review was performed in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. Searches for eligible articles were conducted on five electronic bibliographic databases, including PubMed/MEDLINE, IEEE Xplore, Embase, Scopus, and ScienceDirect. Initial results were screened independently by two reviewers based on clearly defined eligibility criteria. A backward as well as an updated search enriched the initial results. Data were extracted from included articles and presented in a standardized way. Articles were classified into predefined categories according to characteristics extracted previously. The classification was performed according to the following categories: clinical setting including patient population and mono- or multicentric study, support type of the system such as prediction or detection, systems characteristics such as knowledge- or data-driven algorithms used, evaluation of methodology, and results including ground truth definition, sensitivity, and specificity. All results were assessed qualitatively by two reviewers. Results The search resulted in 2,373 articles out of which 55 results were identified as eligible. Over 80% of the articles describe monocentric studies. More than 50% include adult patients, and only four articles explicitly report the inclusion of pediatric patients. Patient recruitment often is very selective, which can be observed from highly varying inclusion and exclusion criteria. The task of disease detection is covered in 62% of the articles; prediction of upcoming conditions in 33%. Sepsis is covered in 67% of the articles, SIRS as sole entity in only 4%, whereas 27% focus on severe sepsis and/or septic shock. The most common combinations of categories “algorithm used” and “support type” are knowledge-based detection of sepsis and data-driven prediction of sepsis. In evaluations, manual chart review (38%) and diagnosis coding (29%) represent the most frequently used ground truth definitions; most studies present a sample size between 10,001 and 100,000 cases (31%) and performances highly differ with only five articles presenting sensitivities and specificities above 90%; four of them using knowledge-based rather than machine learning algorithms. The presentations of holistic CDSS approaches, including technical implementation details, system interfaces, and data and interoperability aspects enabling the use of CDSS in routine settings are missing in nearly all articles. Conclusions The review demonstrated the high variety of research in this context successfully. A clear trend is observable toward the use of data-driven algorithms, and a lack of research could be identified in covering the pediatric population as well as acknowledging SIRS as an independent and threatening condition. The quality as well as the significance of the presented evaluations for assessing the performances of the algorithms in clinical routine settings are often not meeting the current standard of scientific work. Our future interest will be concentrated on these realistic settings by implementing and evaluating SIRS detection approaches as well as considering factors to make the CDSS useable in clinical routine from both technical and medical perspectives.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3