Deployment of machine learning algorithms to predict sepsis: systematic review and application of the SALIENT clinical AI implementation framework

Author:

van der Vegt Anton H1ORCID,Scott Ian A2,Dermawan Krishna3,Schnetler Rudolf J4,Kalke Vikrant R5,Lane Paul J6

Affiliation:

1. Queensland Digital Health Centre, The University of Queensland , Brisbane, Queensland, Australia

2. Department of Internal Medicine and Clinical Epidemiology, Princess Alexandra Hospital , Brisbane, Australia

3. Centre for Information Resilience, The University of Queensland , St Lucia, Australia

4. School of Information Technology and Electrical Engineering, The University of Queensland , St Lucia, Australia

5. Patient Safety and Quality, Clinical Excellence Queensland, Queensland Health , Brisbane, Australia

6. Safety Quality & Innovation, The Prince Charles Hospital, Queensland Health , Brisbane, Australia

Abstract

Abstract Objective To retrieve and appraise studies of deployed artificial intelligence (AI)-based sepsis prediction algorithms using systematic methods, identify implementation barriers, enablers, and key decisions and then map these to a novel end-to-end clinical AI implementation framework. Materials and Methods Systematically review studies of clinically applied AI-based sepsis prediction algorithms in regard to methodological quality, deployment and evaluation methods, and outcomes. Identify contextual factors that influence implementation and map these factors to the SALIENT implementation framework. Results The review identified 30 articles of algorithms applied in adult hospital settings, with 5 studies reporting significantly decreased mortality post-implementation. Eight groups of algorithms were identified, each sharing a common algorithm. We identified 14 barriers, 26 enablers, and 22 decision points which were able to be mapped to the 5 stages of the SALIENT implementation framework. Discussion Empirical studies of deployed sepsis prediction algorithms demonstrate their potential for improving care and reducing mortality but reveal persisting gaps in existing implementation guidance. In the examined publications, key decision points reflecting real-word implementation experience could be mapped to the SALIENT framework and, as these decision points appear to be AI-task agnostic, this framework may also be applicable to non-sepsis algorithms. The mapping clarified where and when barriers, enablers, and key decisions arise within the end-to-end AI implementation process. Conclusions A systematic review of real-world implementation studies of sepsis prediction algorithms was used to validate an end-to-end staged implementation framework that has the ability to account for key factors that warrant attention in ensuring successful deployment, and which extends on previous AI implementation frameworks.

Funder

Queensland Government

Advanced Queensland Industry Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3