Machine Learning for Detection of Correct Peripherally Inserted Central Catheter Tip Position from Radiology Reports in Infants

Author:

Shah Manan1,Shu Derek2,Prasath V. B. Surya3,Ni Yizhao34,Schapiro Andrew H.56,Dufendach Kevin R.123

Affiliation:

1. Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States

2. Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States

3. Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States

4. Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States

5. Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States

6. Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States

Abstract

Abstract Background In critically ill infants, the position of a peripherally inserted central catheter (PICC) must be confirmed frequently, as the tip may move from its original position and run the risk of hyperosmolar vascular damage or extravasation into surrounding spaces. Automated detection of PICC tip position holds great promise for alerting bedside clinicians to noncentral PICCs. Objectives This research seeks to use natural language processing (NLP) and supervised machine learning (ML) techniques to predict PICC tip position based primarily on text analysis of radiograph reports from infants with an upper extremity PICC. Methods Radiographs, containing a PICC line in infants under 6 months of age, were manually classified into 12 anatomical locations based on the radiologist's textual report of the PICC line's tip. After categorization, we performed a 70/30 train/test split and benchmarked the performance of seven different (neural network, support vector machine, the naïve Bayes, decision tree, random forest, AdaBoost, and K-nearest neighbors) supervised ML algorithms. After optimization, we calculated accuracy, precision, and recall of each algorithm's ability to correctly categorize the stated location of the PICC tip. Results A total of 17,337 radiographs met criteria for inclusion and were labeled manually. Interrater agreement was 99.1%. Support vector machines and neural networks yielded accuracies as high as 98% in identifying PICC tips in central versus noncentral position (binary outcome) and accuracies as high as 95% when attempting to categorize the individual anatomical location (12-category outcome). Conclusion Our study shows that ML classifiers can automatically extract the anatomical location of PICC tips from radiology reports. Two ML classifiers, support vector machine (SVM) and a neural network, obtained top accuracies in both binary and multiple category predictions. Implementing these algorithms in a neonatal intensive care unit as a clinical decision support system may help clinicians address PICC line position.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3