Application of a Machine Learning–Based Decision Support Tool to Improve an Injury Surveillance System Workflow

Author:

Catchpoole Jesani123,Nanda Gaurav4,Vallmuur Kirsten23,Nand Goshad1,Lehto Mark5

Affiliation:

1. Queensland Injury Surveillance Unit, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland, Australia

2. Jamieson Trauma Institute, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland, Australia

3. Australian Centre for Health Services Innovation (AusHSI), School of Public Health and Social Work

4. Purdue University, School of Engineering Technology, West Lafayette, Indiana, United States

5. Purdue University, School of Industrial Engineering, West Lafayette, Indiana, United States

Abstract

Abstract Background Emergency department (ED)-based injury surveillance systems across many countries face resourcing challenges related to manual validation and coding of data. Objective This study describes the evaluation of a machine learning (ML)-based decision support tool (DST) to assist injury surveillance departments in the validation, coding, and use of their data, comparing outcomes in coding time, and accuracy pre- and postimplementations. Methods Manually coded injury surveillance data have been used to develop, train, and iteratively refine a ML-based classifier to enable semiautomated coding of injury narrative data. This paper describes a trial implementation of the ML-based DST in the Queensland Injury Surveillance Unit (QISU) workflow using a major pediatric hospital's ED data comparing outcomes in coding time and pre- and postimplementation accuracies. Results The study found a 10% reduction in manual coding time after the DST was introduced. The Kappa statistics analysis in both DST-assisted and -unassisted data shows increase in accuracy across three data fields, that is, injury intent (85.4% unassisted vs. 94.5% assisted), external cause (88.8% unassisted vs. 91.8% assisted), and injury factor (89.3% unassisted vs. 92.9% assisted). The classifier was also used to produce a timely report monitoring injury patterns during the novel coronavirus disease 2019 (COVID-19) pandemic. Hence, it has the potential for near real-time surveillance of emerging hazards to inform public health responses. Conclusion The integration of the DST into the injury surveillance workflow shows benefits as it facilitates timely reporting and acts as a DST in the manual coding process.

Funder

Australian Research Council Discovery Grant

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3