Biomechanical Comparison of Two Conical Coupling Plate Constructs for Cat Tibial Fracture Stabilization

Author:

MacArthur Sandra L.1,Johnson Matthew D.1ORCID,Lewis Daniel D.1

Affiliation:

1. Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida, United States

Abstract

Abstract Objective This study aimed to compare the biomechanical characteristics of two conical coupling plate (CCP) constructs in an ex vivo feline tibial fracture gap model. Study Design Paired tibiae harvested from eight recently euthanatized cats were alternately assigned to one of two stabilization groups. One tibia was stabilized with a standard, 6-hole, 2.5-mm CCP and the contralateral tibia was stabilized with a 6-hole, 2.5-mm prototype CCP (pCCP). Non-destructive cyclic four-point craniocaudal bending, mediolateral bending and axial compression testing were performed, and stiffness was recorded. The specimens were then loaded to failure in axial compression, and yield and failure loads were recorded. Results During non-destructive testing, the pCCP constructs were significantly stiffer than the CCP constructs in both modes of bending and axial loading. Both constructs demonstrated significantly greater craniocaudal bending stiffness compared with mediolateral bending. Yield load and failure load were significantly greater for the pCCP constructs. Conclusion The augmented design of the pCCP yielded superior mechanical characteristics during both non-destructive and destructive testings compared with constructs employing standard CCP. The more rigid design of the pCCP suggests that this implant may be better at withstanding greater loads, particularly when applied in a bridging fashion, during the postoperative convalescence. Further investigations are warranted to prospectively evaluate the clinical performance of the pCCP.

Funder

Intrauma, Rivoli, Italy

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

Reference31 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3