Mechanism of lncRNA H19 in Regulating Pulmonary Injury in Hyperoxia-Induced Bronchopulmonary Dysplasia Newborn Mice

Author:

Zhang Lina1,Wang Ping2,Shen Yanhong1,Huang Tao1,Hu Xiaoyun1,Yu Wei1

Affiliation:

1. Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China

2. Department of Hand and Foot Surgery, Nanchang Fifth Hospital, Nanchang, Jiangxi, People's Republic of China

Abstract

Objective Bronchopulmonary dysplasia (BPD) is a pulmonary injury related to inflammation and is a major cause of premature infant death. Long noncoding RNAs (lncRNAs) are important regulators in pulmonary injury and inflammation. We investigated the molecular mechanism of lncRNA H19 in pulmonary injury and inflammation in hyperoxia (Hyp)-induced BPD mice. Study Design The BPD newborn mouse model was established and intervened with H19 to evaluate the pathologic conditions and radial alveolar count (RAC) in lung tissues of mice in the room air (RA) and Hyp group on the 4th, 7th, and 14th days after birth. The levels of BPD-related biomarkers vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), and surfactant protein C (SPC) in lung tissues were detected on the 14th day after birth. The expression of and relationships among H19 and miR-17, miR-17, and STAT3 were detected and verified. Levels of interleukin (IL)-6, IL-1β, p-STAT3, and STAT3 levels in mouse lung tissues were detected on the 14th day after birth. Results Hyp-induced mice showed increased alveolar diameter, septum, and hyperemia and inflammatory cell infiltration, upregulated H19, decreased overall number and significantly reduced RAC on the 7th and 14th days after birth, which were reversed in the si-H19-treated mice. VEGF was upregulated and TGF-β1 and SPC was decreased in si-H19-treated mice. Moreover, H19 competitively bound to miR-17 to upregulate STAT3. IL-6 and IL-1β expressions and p-STAT3 and STAT3 levels were downregulated after inhibition of H19. Conclusion Downregulated lncRNA H19 relieved pulmonary injury via targeting miR-17 to downregulate STAT3 and reduced inflammatory response caused by p-STAT3 in BPD newborn mice. Key Points

Funder

Science and Technology Plan of Jiangxi Health Department

Publisher

Georg Thieme Verlag KG

Subject

Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3