Mutual Information as an Index of Diagnostic Test Performance

Author:

Benish W. A.

Abstract

Summary Objectives: This paper demonstrates that diagnostic test performance can be quantified as the average amount of information the test result (R) provides about the disease state (D). Methods: A fundamental concept of information theory, mutual information, is directly applicable to this problem. This statistic quantifies the amount of information that one random variable contains about another random variable. Prior to performing a diagnostic test, R and D are random variables. Hence, their mutual information, I(D;R), is the amount of information that R provides about D. Results: I(D;R) is a function of both 1) the pretest probabilities of the disease state and 2) the set of conditional probabilities relating each possible test result to each possible disease state. The area under the receiver operating characteristic curve (AUC) is a popular measure of diagnostic test performance which, in contrast to I(D;R), is independent of the pretest probabilities; it is a function of only the set of conditional probabilities. The AUC is not a measure of diagnostic information. Conclusions: Because I(D;R) is dependent upon pretest probabilities, knowledge of the setting in which a diagnostic test is employed is a necessary condition for quantifying the amount of information it provides. Advantages of I(D;R) over the AUC are that it can be calculated without invoking an arbitrary curve fitting routine, it is applicable to situations in which multiple diagnoses are under consideration, and it quantifies test performance in meaningful units (bits of information).

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3