Abstract
Abstract
Background
The statistical evaluation of aggregation functions for trauma grades, such as the Injury Severity Score (ISS), is largely based on measurements of their Pearson product-moment correlation with mortality. However, correlation analysis makes assumptions about the nature of the involved random variables (cardinality) and their relationship (linearity) that may not be applicable to ordinal scores such as the ISS. Moreover, using correlation as a sole evaluation criterion neglects the dynamic properties of these aggregation functions scores.
Methods
We analyze the domain and ordinal properties of the ISS comparatively to arbitrary linear and cubic aggregation functions. Moreover, we investigate the axiomatic properties of the ISS as a multicriteria aggregation procedure. Finally, we use a queuing simulation with various empirical distributions of Abbreviated Injury Scale (AIS) grades reported in the literature, to evaluate the queuing performance of the three aggregation functions.
Results
We show that the assumptions required for the computation of Pearson’s product-moment correlation coefficients are not applicable to the analysis of the association between the ISS and mortality. We suggest the use of Mutual Information, a information-theoretic statistic that is able to assess general dependence rather than a specialized, linear view based on curve-fitting. Using this metric on the same data set as the seminal study that introduced the ISS, we show that the sum of cubes conveys more information on mortality than the ISS. Moreover, we highlight some unintended, undesirable axiomatic properties of the ISS that can lead to bias in its use as a patient triage criterion. Lastly, our queuing simulation highlights the sensitivity of the queuing performance of different aggregation procedures to the underlying distribution of AIS grades among patients.
Conclusions
Viewing the ISS, and other possible aggregation functions for multiple AIS scores, as mere operational indicators of the priority of care, rather than cardinal measures of the response of the human body to multiple injuries (as was conjectured in the seminal study introducing the ISS) offers a perspective for their construction and evaluation on more robust grounds than the correlation coefficient. In this regard, Mutual Information appears as a more appropriate measure for the study of the association between injury severity and mortality, and queuing simulations as an actionable way to adapt the choice of an aggregation function to the underlying distribution of AIS scores.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献