Biomechanical Comparison of Two Locking Plate Constructs Under Cyclic Loading in Four-Point Bending in a Fracture Gap Model: Two Screws versus Three Screws Per Fragment

Author:

Palierne Sophie1,Froidefond Baptiste1,Swider Pascal2,Autefage André1

Affiliation:

1. Unité de Chirurgie, Ecole Nationale Veterinaire de Toulouse, Toulouse, France

2. Institut de Mécanique des Fluides de Toulouse UMR CNRS 5502, Toulouse, France

Abstract

Objectives The number of locking screws required per fragment during bridging osteosynthesis has not been fully determined in the dog. The purpose of this study was to assess the survival of two constructs, with either two or three screws per fragment, under cyclic bending. Methods A 10-hole, 3.5-mm stainless steel locking compression plate was fixed 1 mm away from a bone surrogate in which the fracture gap was 47 mm. Two groups of 10 constructs, prepared with either two or three bicortical locking screws placed at the extremities of each fragment, were tested in a load-controlled 4-point bending test (range 0.7 to + 7 Nm) until failure. Results The 3-screw constructs were stiffer than the 2-screw constructs (19.73 ± 0.68 N/mm vs. 15.52 ± 0.51 N/mm respectively) and the interfragmentary relative displacements were higher for the 2-screw constructs (11.17 ± 0.88%) than for the 3-screw constructs (8.00 ± 0.45%). The difference between the number of cycles to failure for the 3-screw constructs (162,448 ± 30,073 cycles) and the 2-screw constructs (143,786 ± 10,103 cycles) was not significant. Failure in all constructs was due to plate fracture at the level of the compression holes. Clinical Significance Omission of the third innermost locking screw during bridging osteosynthesis subjected to bending forces led to a 20% reduction in construct stiffness and increased relative displacement (+39.6%) but did not change fatigue life.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3