Decreased Platelet Membrane Fluidity Due to Glycation or Acetylation of Membrane Proteins

Author:

Winocour Peter D1,Watala Cezary1,Perry Dennis W1,Kinlough-Rathbone Raelene L1

Affiliation:

1. The Department of Pathology, McMaster University, Hamilton, Ontario, Canada

Abstract

SummaryPlatelets from diabetic subjects and animals are hypersensitive to agonists in vitro. Membrane fluidity modulates cell function and previously we observed reduced membrane fluidity in platelets from diabetic patients associated with hypersensitivity to thrombin. We previously reported that decreased fluidity of isolated platelet membranes from diabetic patients is associated with increased glycation of platelet membrane proteins, but not with any change in the cholesterol to phospholipid molar ratio. We have now examined in vitro whether incubation of platelet membranes in a high glucose medium causes sufficient glycation to reduce membrane fluidity. Incubation of platelet membranes from control subjects in a high glucose (16.1 mM) medium for 10 days at 37° C led to an increase in the extent of glycation of membrane proteins and a decrease in membrane fluidity (indicated by an increase in steady state fluorescence polarization); most of the changes occurred within the first 3 days of incubation. Incubation of platelet membranes with 5.4 mM glucose had less effect. In contrast, incubation of platelet membranes with the same concentrations of 1–0-methylglucose did not cause a change in either the extent of glycation of proteins or membrane fluidity. We also determined if acetylation by aspirin or acetyl chloride of the sites available for glycation on platelet membrane proteins leads to a similar reduction in membrane fluidity. Pretreatment of platelet membranes with aspirin or acetyl chloride diminished the extent of glycation that occurred when platelet membranes were subsequently incubated with glucose, but membrane fluidity was reduced even in the absence of glucose; subsequent incubation with glucose caused no further reduction in membrane fluidity. Similar results were obtained when red blood cells were incubated with high concentrations of glucose or methyl glucose either with or without pretreatment with aspirin or acetyl chloride. Further experiments using platelet membranes showed that the reduction in membrane fluidity due to aspirin was independent of its acetylating effect on platelet cyclo-oxygenase. Ingestion of aspirin also caused a reduction in membrane fluidity of platelets. Therefore, glycation of platelet membrane proteins reduces membrane fluidity, but the effect results from occupation of the sites available for glycation and not the presence of glucose moieties per se at these sites. Acetylation of platelet membrane proteins either in vitro or in vivo also reduces membrane fluidity; this effect is not associated with platelet hypersensitivity to thrombin.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3