Expression and Characterization of Recombinant Human Protein S in Heterologous Cells - Studies of the Interaction of Amino Acid Residues Leu-608 to Glu-612 with Human C4b-Binding Protein

Author:

Chang Glenn T G1,Ploos van Amstel Hans K2,Hessing Martin1,Reitsma Pieter H2,Bertina Rogier M2,Bouma Bonno N1

Affiliation:

1. The Department of Haematology, University Hospital Utrecht, Utrecht, The Netherlands

2. Haemostasis and Thrombosis Research Unit, Leiden University Hospital, Leiden, The Netherlands

Abstract

SummaryMouse C127 epithelioid cells were genetically engineered to produce biologically active ³-carboxylated human protein S. A full length human protein S cDNA was cloned into a bovine papilloma virus (BPV) based shuttle vector under the transcriptional control of the Moloney murine sarcoma virus enhancer and the mouse metallothionein promoter. Stable expression was obtained in transfected C127 cells. Expression of ³-carboxylated protein S was dependent on the presence of vitamin K in the culture medium. Protein sequence analysis showed that recombinant and plasma protein S have the same amino terminal sequence. Analysis of specific post-translationally modified amino acids shows that recombinant protein S is fully ³-carboxylated and fully p-hydroxylated. Immunoblotting analysis using polyclonal and monoclonal antibodies shows that recombinant protein S has a slightly higher molecular weight than plasma protein S. After N-Glycanase treatment, identical molecular weights are observed for recombinant and plasma protein S, indicating that the difference is caused by differences in the N-linked carbohydrate side chains. Recombinant protein S also demonstrates normal cofactor activity for activated protein C in a clotting assay. Binding studies with the complement component, C4b-binding protein (C4BP), shows that recombinant protein S binds to C4BP with the same apparent affinity as plasma protein S. Two variant molecules are also tested for their binding to C4BP. The first variant has a replacement of amino acid residue leu-608 by val and was designated B variant. The second variant has three alterations, at positions 609, 611 and 612 where the acidic amino acid residues asp, asp and glu were replaced by asn, asn and gin, respectively and this variant was designated C variant. The binding of these variants to C4BP was the same as wild type recombinant protein S. This suggests that amino acid residues leu-608, asp-609, asp-611 and glu-612 are not essential for binding of the intact full length protein to C4BP.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3