Understanding the functional difference between growth arrest-specific protein 6 and protein S: an evolutionary approach

Author:

Studer Romain A.1,Opperdoes Fred R.2,Nicolaes Gerry A. F.3,Mulder André B.4,Mulder René4

Affiliation:

1. European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

2. Laboratory of Biochemistry, de Duve Institute and Université catholique de Louvain, Brussels 1200, Belgium

3. Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands

4. Department of Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands

Abstract

Although protein S (PROS1) and growth arrest-specific protein 6 (GAS6) proteins are homologous with a high degree of structural similarity, they are functionally different. The objectives of this study were to identify the evolutionary origins from which these functional differences arose. Bioinformatics methods were used to estimate the evolutionary divergence time and to detect the amino acid residues under functional divergence between GAS6 and PROS1 . The properties of these residues were analysed in the light of their three-dimensional structures, such as their stability effects, the identification of electrostatic patches and the identification potential protein–protein interaction. The divergence between GAS6 and PROS1 probably occurred during the whole-genome duplications in vertebrates. A total of 78 amino acid sites were identified to be under functional divergence. One of these sites, Asn463, is involved in N -glycosylation in GAS6, but is mutated in PROS1, preventing this post-translational modification. Sites experiencing functional divergence tend to express a greater diversity of stabilizing/destabilizing effects than sites that do not experience such functional divergence. Three electrostatic patches in the LG1/LG2 domains were found to differ between GAS6 and PROS1. Finally, a surface responsible for protein–protein interactions was identified. These results may help researchers to analyse disease-causing mutations in the light of evolutionary and structural constraints, and link genetic pathology to clinical phenotypes.

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3