Entering the Black Box of Neural Networks

Author:

Gerber B. S.,Tape T. G.,Wigton R. S.,Heckerling P. S.

Abstract

Summary Objectives: Artificial neural networks have proved to be accurate predictive instruments in several medical domains, but have been criticized for failing to specify the information upon which their predictions are based. We used methods of relevance analysis and sensitivity analysis to determine the most important predictor variables for a validated neural network for community-acquired pneumonia. Methods: We studied a feed-forward, back-propagation neural network trained to predict pneumonia among patients presenting to an emergency department with fever or respiratory complaints. We used the methods of full retraining, weight elimination, constant substitution, linear substitution, and data permutation to identify a consensus set of important demographic, symptom, sign, and comorbidity predictors that influenced network output for pneumonia. We compared predictors identified by these methods to those identified by a weight propagation analysis based on the matrices of the network, and by logistic regression. Results: Predictors identified by these methods were clinically plausible, and were concordant with those identified by weight analysis, and by logistic regression using the same data. The methods were highly correlated in network error, and led to variable sets with errors below bootstrap 95% confidence intervals for networks with similar numbers of inputs. Scores for variable relevance tended to be higher with methods that precluded network retraining (weight elimination) or that permuted variable values (data permutation), compared with methods that permitted retraining (full retraining) or that approximated its effects (constant and linear substitution). Conclusion: Methods of relevance analysis and sensitivity analysis are useful for identifying important predictor variables used by artificial neural networks.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3