Probabilistic Prediction of Significant Wave Height Using Dynamic Bayesian Network and Information Flow

Author:

Li MingORCID,Liu Kefeng

Abstract

Short-term prediction of wave height is paramount in oceanic operation-related activities. Statistical models have advantages in short-term wave prediction as complex physical process is substantially simplified. However, previous statistical models have no consideration in selection of predictive variables and dealing with prediction uncertainty. This paper develops a machine learning model by combining the dynamic Bayesian network (DBN) with the information flow (IF) designated as DBN-IF. IF is focused on selecting the best predictive variables for DBN by causal analysis instead of correlation analysis. DBN for probabilistic prediction is constructed by structure learning and parameter learning with data mining. Based on causal theory, graph theory, and probability theory, the proposed DBN-IF model could deal with the uncertainty and shows great performance in significant wave height prediction compared with the artificial neural network (ANN), random forest (RF) and support vector machine (SVM) for all lead times. The interpretable DBN-IF is proven as a promising tool for nonlinear and uncertain wave height prediction.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3