Novel Ocean Wave Height and Energy Spectrum Forecasting Approaches: An Application of Semi-Analytical and Machine Learning Models

Author:

Elkhrachy Ismail1ORCID,Alhamami Ali1,Alyami Saleh H.1,Alviz-Meza Aníbal2ORCID

Affiliation:

1. Civil Engineering Department, College of Engineering, Najran University, King Abdulaziz Road, Najran 66454, Saudi Arabia

2. Grupo de Investigación en Deterioro de Materiales, Transición Energética y Ciencia de Datos DANT3, Facultad de Ingeniería, Arquitectura y Urbanismo, Universidad Señor de Sipán, Km 5 Vía Pimentel, Chiclayo 14001, Peru

Abstract

Accurate and reliable wave forecasting is crucial for optimizing the performance of various marine operations, such as offshore energy production, shipping, and fishing. Meanwhile, predicting wave height and wave energy is crucial for achieving sustainability as a renewable energy source, as it enables the harnessing of the power of wave energy efficiently based on the water-energy nexus. Advanced wave forecasting models, such as machine learning models and the semi-analytical approach, have been developed to provide more accurate predictions of ocean waves. In this study, the Sverdrup Munk Bretschneider (SMB) semi-analytical approach, Emotional Artificial Neural Network (EANN) approach, and Wavelet Artificial Neural Network (WANN) approach will be used to estimate ocean wave parameters in the Gulf of Mexico and Aleutian Basin. The accuracy and reliability of these approaches will be evaluated, and the spatial and temporal variability of the wave field will be investigated. The available wave characteristics are used to generate hourly, 12-hourly, and daily datasets. The WANN and SMB model shows good performance in the daily prediction of the significant wave height in both case studies. In the SMB model, specifically on a daily time scale, the Nash–Sutcliffe Efficiency (NSE) and the peak deviation coefficient (DCpeak) were determined to be 0.62 and 0.54 for the Aleutian buoy and 0.64 and 0.55 for the Gulf of Mexico buoy, respectively, for significant wave height. In the context of the WANN model and in the testing phase at the daily time scale, the NSE and DCpeak indices exhibit values of 0.85 and 0.61 for the Aleutian buoy and 0.72 and 0.61 for the Gulf of Mexico buoy, respectively, while the EANN model is a strong tool in hourly wave height prediction (Aleutian buoy (NSEEANN = 0.60 and DCpeakEANN = 0.88), Gulf of Mexico buoy (NSEEANN = 0.80 and DCpeakEANN = 0.82)). In addition, the findings pertaining to the energy spectrum density demonstrate that the EANN model exhibits superior performance in comparison to the WANN and SMB models, particularly with regard to accurately estimating the peak of the spectrum (Aleutian buoy (DCpeakEANN= 0.41), Gulf of Mexico buoy (DCpeakEANN = 0.59)).

Funder

Najran University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3