Affiliation:
1. College of Ocean and Civil Engineering, Dalian Ocean University, Dalian 116023, China
2. College of Civil Engineering, Chongqing University, Chongqing 400044, China
3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Abstract
In recent years, wave energy has gained attention for its sustainability and cleanliness. As one of the most important parameters of wave energy, significant wave height (SWH) is difficult to accurately predict due to complex ocean conditions and the ubiquitous chaotic phenomena in nature. Therefore, this paper proposes an integrated CEEMDAN-LSTM joint model. Traditional computational fluid dynamics (CFD) has a long calculation period and high capital consumption, but artificial intelligence methods have the advantage of high accuracy and fast convergence. CEEMDAN is a commonly used method for digital signal processing in mechanical engineering, but has not yet been used for SWH prediction. It has better performance than the EMD and EEMD and is more suitable for LSTM prediction. In addition, this paper also proposes a novel filter formulation for SWH outliers based on the improved violin-box plot. The final empirical results show that CEEMDAN-LSTM significantly outperforms LSTM for each forecast duration, significantly improving the prediction accuracy. In particular, for a forecast duration of 1 h, CEEMDAN-LSTM has the most significant improvement over LSTM, with 71.91% of RMSE, 68.46% of MAE and 6.80% of NSE, respectively. In summary, our model can improve the real-time scheduling capability for marine engineering maintenance and operations.
Funder
National Natural Science Foundation of China
Liaoning Provincial Education Department Scientific Research Funding Project
the National College Students Innovation and Entrepreneurship Training Program Fund
2022 Liaoning College Student Innovation and Entrepreneurship Training Program Fund
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献