Uptake and Degradation of Tissue Plasminogen Activator in Rat Liver

Author:

Einarsson Monica1,Smedsrød Bård2,Pertoft Håkan2

Affiliation:

1. The Research Department Biochemistry, KabiVitrum AB, Stockholm, Sweden

2. The Department of Medical and Physiological Chemistry, University of Uppsala, Uppsala, Sweden

Abstract

SummaryThe mechanism of uptake of tissue plasminogen activator (tPA) in rat liver was studied. Radio-iodinated tPA was removed from the circulation after intravenous administration in a biphasic mode. The initial half life, t1/2(α), and the terminal phase, t1/2(β), were determined to be 0.5 min and 7.5 min, resp. Separation of the liver cells by collagenase perfusion and density centrifugation, revealed that the uptake per cell was two to three times higher in the non-parenchymal cells than in the parenchymal cells.Endocytosis of fluorescein isothiocyanate-labelled or 125I-labelled tPA was studied in pure cultures of liver cells in vitro. Liver endothelial cells and parenchymal cells took up and degraded tPA. Endocytosis was more efficient in liver endothelial cells than in parenchymal cells, and was almost absent in Kupffer cells.Competitivb inhibition experiments showing that excess unlabelled tPA could compete with the uptake and degradation of 125I-tPA, suggested that liver endothelial cells and parenchymal cells interact with the activator in a specific manner. Endocytosis of trace amounts of 125I-tPA in cultures of liver endothelial cells and parenchymal cells was inhibited by 50% in the presence of 19 nM unlabelled tPA. Agents that interfere with one or several steps of the endocytic machinery inhibited uptake and degradation of 125I-tPA in both cell types.These findings suggest that 1) liver endothelial cells and parenchymal cells are responsible for the rapid hepatic clearance of intravenously administered tPA; 2) the activator is taken up in these cells by specific endocytosis, and 3) endocytosed tPA is transported to the lysosomes where it is degraded.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3