Two Models for Outcome Prediction

Author:

Linder R.,Weimar C.,Diener H. C.,Pöppl S. J.,Ziegler A.,König I. R.

Abstract

Summary Objectives: Accurately predicting disease progress from a set of predictive variables is an important aspect of clinical work. For binary outcomes, the classical approach is to develop prognostic logistic regression (LR) models. Alternatively, machine learning algorithms were proposed with artificial neural networks (ANN) having become popular over the last decades. Although some studies have compared predictive accuracies of LR and ANN models, some concerns regarding their methodological quality have been voiced. Our comparison has the advantage of being based on two large independent data sets allowing for elaborate model development and independent validation. Methods: From the German Stroke Database, a learning data set including 1754 prospectively recruited patients with acute ischemic stroke was used. Utilizing LR and ANN, two prognostic models were developed predicting restitution of functional independence and survival after 100 days. The resulting models were applied to classify 1470 patients with acute ischemic stroke; this test data set was collected independently from the learning data. Error fractions in the test data were determined, and differences in error fractions between the algorithms were calculated with 95% confidence intervals. Results: For most prognostic models, error fractions in the test data were below 40%. There was no difference between the algorithms except for the model predicting completely versus incompletely restituted or deceased patients (difference in error fractions = 4.01% [2.10-5.96%], p = 0.0001). Conclusions: The conscientiously applied LR remains the gold standard for prognostic modelling; however, ANN can be an alternative automated “quick and easy” multivariate analysis.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting stroke events with a proactive fusion system: a comprehensive study on imbalance class handling in computational biomechanics;Computer Methods in Biomechanics and Biomedical Engineering;2024-06-20

2. Machine learning applications in stroke medicine: advancements, challenges, and future prospectives;Neural Regeneration Research;2023-08-14

3. Exploring the Performances of Stacking Classifier in Predicting Patients Having Stroke;2021 8th NAFOSTED Conference on Information and Computer Science (NICS);2021-12-21

4. Prediction of Heart Stroke using A Novel Framework – PySpark;International Journal of Preventive Medicine and Health;2021-05-10

5. Prediction of Heart Stroke using A Novel Framework – PySpark;International Journal of Preventive Medicine and Health;2021-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3