Prediction of Heart Stroke using A Novel Framework – PySpark

Author:

B Chitluri Sai Harish1,vamsi G gnana krishna2,akhil G jaya phani1,sravan J n v hari1,chowdary V mounika1

Affiliation:

1. Department of Computer Science and Engineering from KL University.

2. Department of Computer Science and Engineering from KL University

Abstract

Heart diseases are one of the most challenging problems faced by the Health Care sectors all over the world. These diseases are very basic now a days. With the expanding count of deaths because of heart illnesses, the necessity to build up a system to foresee heart ailments precisely. The work in this paper focuses on finding the best Machine Learning algorithm for identification of heart diseases. Our study compares the precision of three well known classification algorithms, Decision Tree and Naïve Bayes, Random Forest for the prediction of heart disease by making the use of dataset provided by Kaggle. We utilized various characteristics which relate with this heart diseases well, to find the better algorithm for prediction. The result of this study indicates that the Random Forest algorithm is the most efficient algorithm for prediction of heart disease with accuracy score of 97.17%.

Publisher

Lattice Science Publication (LSP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3